3.489 \(\int \frac{\sec ^3(c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=85 \[ \frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\tan (c+d x)}{b d} \]

[Out]

-((a*ArcTanh[Sin[c + d*x]])/(b^2*d)) + (2*a^2*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b
]*b^2*Sqrt[a + b]*d) + Tan[c + d*x]/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.162578, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3790, 3789, 3770, 3831, 2659, 208} \[ \frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\tan (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + b*Sec[c + d*x]),x]

[Out]

-((a*ArcTanh[Sin[c + d*x]])/(b^2*d)) + (2*a^2*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b
]*b^2*Sqrt[a + b]*d) + Tan[c + d*x]/(b*d)

Rule 3790

Int[csc[(e_.) + (f_.)*(x_)]^3/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(b*f), x
] - Dist[a/b, Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3789

Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[Csc[e + f*x],
 x], x] - Dist[a/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{a+b \sec (c+d x)} \, dx &=\frac{\tan (c+d x)}{b d}-\frac{a \int \frac{\sec ^2(c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=\frac{\tan (c+d x)}{b d}-\frac{a \int \sec (c+d x) \, dx}{b^2}+\frac{a^2 \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b^2}\\ &=-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\tan (c+d x)}{b d}+\frac{a^2 \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b^3}\\ &=-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{\tan (c+d x)}{b d}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^3 d}\\ &=-\frac{a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{2 a^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} b^2 \sqrt{a+b} d}+\frac{\tan (c+d x)}{b d}\\ \end{align*}

Mathematica [A]  time = 0.37087, size = 115, normalized size = 1.35 \[ \frac{-\frac{2 a^2 \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}+a \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+b \tan (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + b*Sec[c + d*x]),x]

[Out]

((-2*a^2*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + a*(Log[Cos[(c + d*x)/2] - Sin
[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + b*Tan[c + d*x])/(b^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 134, normalized size = 1.6 \begin{align*} 2\,{\frac{{a}^{2}}{d{b}^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-{\frac{1}{db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{a}{d{b}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{1}{db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{a}{d{b}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+b*sec(d*x+c)),x)

[Out]

2/d*a^2/b^2/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/d/b/(tan(1/2*d*x+1/2*c
)+1)-1/d*a/b^2*ln(tan(1/2*d*x+1/2*c)+1)-1/d/b/(tan(1/2*d*x+1/2*c)-1)+1/d*a/b^2*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.18313, size = 902, normalized size = 10.61 \begin{align*} \left [\frac{\sqrt{a^{2} - b^{2}} a^{2} \cos \left (d x + c\right ) \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) -{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}, \frac{2 \, \sqrt{-a^{2} + b^{2}} a^{2} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) -{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a^2 - b^2)*a^2*cos(d*x + c)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b
^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - (a^3 -
 a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (a^3 - a*b^2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(a^2*b - b^
3)*sin(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x + c)), 1/2*(2*sqrt(-a^2 + b^2)*a^2*arctan(-sqrt(-a^2 + b^2)*(b*cos
(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c)))*cos(d*x + c) - (a^3 - a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (
a^3 - a*b^2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(a^2*b - b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x +
c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+b*sec(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**3/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.21458, size = 205, normalized size = 2.41 \begin{align*} \frac{\frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )} a^{2}}{\sqrt{-a^{2} + b^{2}} b^{2}} - \frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} + \frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} - \frac{2 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c
))/sqrt(-a^2 + b^2)))*a^2/(sqrt(-a^2 + b^2)*b^2) - a*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 + a*log(abs(tan(1/
2*d*x + 1/2*c) - 1))/b^2 - 2*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*b))/d